

PROGRAMMA DEL CORSO DI ANALISI MATEMATICA II

SETTORE SCIENTIFICO
MAT/05
CFU
9
DESCRIZIONE
1 - INTRODUZIONE AGLI SPAZI NORMATI
2 - ELEMENTI DI TOPOLOGIA
3 - TOPOLOGIA IN RN
4 - ELEMENTI DI ALGEBRA LINEARE
5 - FUNZIONI REALI IN RN
6 - CALCOLO DEI LIMITI IN R2
7 - LIMITI IN R2 E COORDINATE POLARI
8 - CALCOLO DIFFERENZIALE IN RN
9 - DIFFERENZIABILITA' IN RN
10 - DERIVATE DIREZIONALI

11 - CRITERI DI DIFFERENZIABILITA'
12 - FUNZIONI COMPOSTE
13 - TEOREMI DEL CALCOLO DIFFERENZIALE
14 - DERIVATE DI ORDINE SUPERIORE
15 - ESTREMI E PUNTI CRITICI
16 - ESTREMI E CONDIZIONI SUFFICIENTI
17 - STUDIO DI MASSIMI E MINIMI
18 - COMPLEMENTI ALLE FUNZIONI DIFFERENZIABILI
19 - CURVE IN RN
20 - LUNGHEZZA DI UNA CURVA
21 - INTEGRALE CURVILINEO
22 - SUCCESSIONI DI FUNZIONI
23 - TEOREMI DI INVERSIONE DEI LIMITI
24 - LO SPAZIO CO[A,B]
25 - SERIE DI FUNZIONI
26 - SERIE DI POTENZE

27 - SERIE DI POTENZE ED ESERCIZI SVOLTI
28 - INTRODUZIONE ALLE SERIE DI FOURIER
29 - SVILUPPO IN SERIE DI FOURIER
30 - CONVERGENZA DELLA SERIE DI FOURIER
31 - INTRODUZIONE ALLE FORME DIFFERENZIALI
31 - INTRODUZIONE ALLE FORME DITTERENZIALI
32 - FORME DIFFERENZIALI ESATTE
33 - TEOREMI SULLE FORME ESATTE
34 - FORME DIFFERENZIALI CHIUSE
35 - FORME CHIUSE NEL PIANO
36 - CAMPI VETTORIALI E FORME DIFFERENZIALI
37 - OPERATORI DIFFERENZIALI
38 - CIRCUITAZIONE E CAMPI CONSERVATIVI
39 - EQUAZIONI DIFFERENZIALI ORDINARIE
40 - RISOLUZIONE DI ALCUNE EQUAZIONI ORDINARIE
41 - RISOLUZIONE DI EQUAZIONI A VARIABILI
42 - RISOLUZIONE DI ULTERIORI TIPI DI EQUAZIONI ORDINARIE

OBIETTIVI

Il corso ha lo scopo di fornire conoscenze di Analisi matematica avanzata illustrando nozioni e teoremi relativi a: differenziabilità e di integrabilità per le funzioni di più variabili reali, convergenza puntuale e uniforme di serie di funzioni, curve ed integrali curvilinei, elementi di teoria della misura e integrazione secondo Lebesgue.

RISORSE

Conoscenza e capacità di comprensione

Lo studente acquisirà la conoscenza delle principali nozioni del calcolo differenziale delle funzioni di più variabili reali.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di applicare le tecniche fondamentali del calcolo differenziale per funzioni di più variabili reali nell'ambito delle scienze pure ed applicate.

Autonomia di giudizio

Al termine del corso, lo studente ha le conoscenze dell'analisi matematica avanzata, individuandola come scienza centrale utile e creativa. Ha la conoscenza di differenziabilità e di integrabilità per le funzioni di più variabili reali e di convergenza puntuale e uniforme di serie di funzioni. Sa applicare tali conoscenze alla soluzione di problemi posti dalle scienze pure ed applicate. Sa risolvere problemi pratici di ottimizzazione e di misurazione. Possiede autonomia di giudizio in riferimento alla formalizzazione matematica di semplici problemi delle scienze applicate.

Contenuti

Spazi metrici e cenni della loro topologia. Compattezza. Contrazioni.

Calcolo differenziale per funzioni di più variabili reali. Formula di Taylor. Massimi e minimi locali. Invertibilità locale e funzioni implicite. Estremi vincolati.

Esistenza locale e prolungabilità delle soluzioni di problemi di Cauchy per equazioni differenziali ordinarie; metodi risolutivi per equazioni di tipo particolare. Equazioni e sistemi lineari: integrale generale, risoluzione di equazioni e sistemi a coefficienti costanti.

Successioni e serie di funzioni: convergenza puntuale e uniforme. Serie di potenze. Criteri di convergenza.

Curve e integrali curvilinei. Campi vettoriali, potenziali.

Elementi di teoria della misura e integrazione secondo Lebesgue in Rn. Passaggio al limite sotto al segno di integrale, teoremi di riduzione e di cambiamento di variabile.

VERIFICA

L'esame può essere sostenuto sia in forma scritta che in forma orale.

L'esame orale consiste in un colloquio nel corso del quale il docente formula di solito tre domande. L'esame scritto consiste nello svolgimento di un test con 31 domande. Per ogni domanda lo studente deve scegliere una di 4 possibili risposte. Solo una risposta è corretta.

Sia le domande orali che le domande scritte sono formulate per valutare sia il grado di comprensione delle nozioni teoriche sia la capacità di ragionare utilizzando tali nozioni. Le domande sulle nozioni teoriche consentiranno di valutare il livello di comprensione. Le domande che richiedono l'elaborazione di un ragionamento consentiranno di valutare il livello di competenza e l'autonomia di giudizio maturati dallo studente.

Le abilità di comunicazione e la capacità di apprendimento saranno valutate attraverso le interazioni dirette tra docente e studente che avranno luogo durante la fruizione del corso (videoconferenze, e-tivity report, studio di casi elaborati) proposti dal docente o dal tutor.

AGENDA

L'iscrizione ed i rapporti con gli studenti sono gestiti mediante la piattaforma informatica che permette l'iscrizione ai corsi, la fruizione delle lezioni, la partecipazione a forum e tutoraggi, il download del materiale didattico e la comunicazione con il docente. Un tutor assisterà gli studenti nello svolgimento di queste attività.

ATTIVITÀ DI DIDATTICA EROGATIVA (DE)

54 Videolezioni + 54 test di autovalutazione Impegno totale stimato: 54 ore.

ATTIVITÀ DI DIDATTICA INTERATTIVA (DI) ED E-TIVITY CON RELATIVO FEED-BACK AL SINGOLO STUDENTE DA PARTE DEL DOCENTE O DEL TUTOR

- Partecipazione a una web conference
- Redazione di un elaborato
- Svolgimento delle prove in itinere con feedback
- Svolgimento della simulazione del test finale

Totale 9 ore.

ATTIVITÀ DI AUTOAPPRENDIMENTO

162 ore per lo studio individuale.

TESTI CONSIGLIATI

Dispense del docente.